В наше время невозможно представить жизнь без электричества и электроприборов. Сегодня без них невозможно обойтись как на производстве, так и в бытовых условиях. Многие необходимые устройства и машины запускаются в действие с помощью электродвигателей.
Сегодня трехфазные асинхронные двигатели имеют огромную важность для производства, и в быту. Они практически не требуют технического обслуживания, надежны по качеству, не нужно использовать дорогостоящее оборудование при подключении. Множество строительных инструментов, бытовой и производственной техники работает на подобных двигателях. Однако бывают ситуации, когда необходимо воспользоваться такой техникой, а трехфазной сети по близости нет. Например, затеяли вы ремонт: нужно воспользоваться циркулярной пилой или токарным станком в домашних условиях, а дом не оснащен трехфазным электроснабжением. Что же тогда делать? Выход из этой ситуации есть и достаточно простой. Данная статья поможет вам разобраться, как подключить трехфазный двигатель в сеть 220 В.
Для более подробного понимания вопроса необходимо разобраться, какие существуют основные виды электродвигателей и для каких устройств используются.
Питающее напряжение бывает разных типов. В соответствии с этим, электродвигатели подразделяются на два вида.
На фото выше представлен электродвигатель постоянного тока. Его основные составляющие:
Функционирование устройства осуществляется таким образом: один магнит существует физически, а второй создается в якоре после присоединения к источнику постоянного тока, которым является в данном случае коллекторно-щеточный узел. К коллектору подсоединены концы обмотки якоря. Коллектор является токопроводящей частью электродвигателя, закреплен на валу. Чтобы создать вращение, нужно, чтобы полюса постоянно менялись местами. Для этого кольца коллектора разделены на секторы, которые поделены диэлектрическими пластинами. Концы якорной обмотки соединяются с пластинами по очереди.
Существуют двигатели большой мощности, в которые не входит из-за большого веса ни одного физического магнита. Вместо них в двигателе находится несколько металлических стержней с обмоткой из проводника, который подключен к питающей шине (плюсовой или минусовой). Последовательно включаются одноименные полюса.
Разработчики данного электродвигателя заложили в него одну особенность, позволяющую компенсировать валовое торможение, а также снижение эффективности работы двигателя при его запуске с разной нагрузкой. Этот факт добавляет значительное преимущество данному виду электродвигателя.
Подключение двигателя постоянного тока возможно можно несколькими способами:
При последовательном способе обмотка якоря последовательно идет в цепь питания. Это необходимо, чтобы при надобности можно было резко увеличить вращающую силу двигателя. Например, при страгивании с места поезда.
Методом параллельного возбуждения пользуются в основном для подключения станков и кранового оборудования, так как данный способ является наиболее плавным и позволяет достичь стабильности скорости вращения. А все благодаря включению обычной регулируемой (реостата).
Смешанный способ подразумевает учесть особенности рассмотренных выше двух способов.
Агрегаты постоянного тока, благодаря возможности регулировки частоты вращения, универсальны. Их используют как для электрического транспорта, так и для грузоподъемников.
Многие, наверное, замечали, что при запуске двигателя лампы накаливания начинают светить по-другому. Это происходит из-за специфики действия двигателя с короткозамкнутым ротором. Дело в том, что у него высокие пусковые токи. Этим обусловлено применение фазного ротора для двигателей большой мощности.
Данный вид двигателей делится на синхронные и асинхронные. Статор и магнитное поле якоря немного отличаются по скорости, именно поэтому агрегаты переменного тока принято называть асинхронными. Они подразделяются на:
Также существует классификация устройств переменного тока на однофазные и трехфазные. Принцип работы они имеют абсолютно идентичный. Разница заключается в скорости пусковых моментов: у однофазных электродвигателей имеются большие пусковые и рабочие токи, а у трехфазных - наоборот.
В наше время наиболее распространены трехфазные синхронные и асинхронные двигатели. Наиболее широкое применение получили асинхронные электродвигатели. Если пусковой момент не важен, то применяют устройство с короткозамкнутым ротором. А если требуется увеличение пускового момента и плавная регулировка скорости, используется машина с фазным ротором.
Применение асинхронных электродвигателей организовано на промышленных предприятиях и в бытовой технике. Однофазные машины используются в сети тока - 220 вольт. Такие двигатели можно увидеть в стиральных машинах, сверлильных станках, кухонных комбайнах, в строительном инструменте и другом оборудовании. Очень важны такие агрегаты и для промышленности: их используют для приводов грузовых лебедок, кранов и другого оборудования.
Асинхронные электродвигатели могут в своей конструкции иметь коллектор или не иметь его. Коллекторные двигатели имеют большой пусковой момент и небольшие размеры, а бесколлекторные - низкий уровень шума и электромагнитных излучений. Бесколлекторные устройства обычно применяются во взрывоопасных отраслях и имеют долгий срок службы. Оба вида агрегатов используются в медицинской технике и бытовых электроустройствах (холодильниках, мясорубках, вентиляторах и другой технике).
Электродвигатели трехфазного вида тоже широко распространены. Они имеют трехфазную симметрическую обмотку на сердечнике статора. Асинхронные применяются, в основном, как двигатели, а синхронные - как генераторы.
Разновидность синхронных двигателей - это устройство с двумя обмотками, одна из которых имеет постоянную скорость вращения, а другая равна частоте вращения ротора, не зависящей от нагрузки. Такие агрегаты обычно можно встретить в крупных установках (поршневые компрессоры, воздухопроводы).
Существуют также рольганговые электромоторы, которые используются для условий высоких температур, взрывозащитные - для взрывоопасных отраслей (нефтепереработка, химическая и газовая промышленность). Общепромышленные электродвигатели широко применяются деревообработке, станкостроении, в системах промышленной вентиляции и другом оборудовании.
Важность, нужность и незаменимость таких электродвигателей колоссальна. Они просто необходимы как для бытовой жизни, так и для целых экономических отраслей.
Основное преимущество устройства этого вида двигателя в том, что у него между статором и ротором нет электрической контактной связи . Но это относится только к двигателям с короткозамкнутым ротором. Дело в том, что коллекторы и щетки - самые износостойкие места в электродвигателе. Составляющие трехфазного вида асинхронного двигателя с короткозамкнутым ротором можно увидеть на рисунке ниже.
Основные составляющие данного электродвигателя:
Весь механизм двигателя собран в литом корпусе. Самые основные части - подвижный ротор и неподвижный статор. Сердечник статора состоит из специальных листов из электротехнической стали, обладающей отличными магнитными свойствами. Также каждый лист покрыт специальным лаком, чтобы в сердечнике не возникали токи, которых не должно быть в статоре. В пазах сердечника имеется, как минимум, 3 медных эмалированных провода. Ротор находится внутри сердечника статора и осуществляет вращения на валу. В пазах сердечника ротора находятся короткозамкнутые проводники, которые своим расположением напоминают беличье колесо. Изготавливаются они заливанием в пазы сердечника предварительно расплавленного алюминия. В машинах большой мощности проводниками являются медные стержни.
А что же заставляет электродвигатель работать и исполнять свои функции? После подсоединения устройства к трехфазному электроснабжению, обмотки статора начнут передавать ток. Благодаря образующимся при этом магнитным потокам в сердечнике статора образуется магнитное поле, которое начинает вращаться. Это поле постоянно изменяется и пересекает короткозамкнутые проводники, вызывая электродвижущую силу. Возникающие под воздействием этой силы токи создают собственное магнитное поле. Затем начинается его взаимодействие с полем статора. Так как полюса разноименные притягиваются, а одноименные отталкиваются, получающиеся в результате этих процессов силы приводят в действие ротор. Затем он начинает вращаться. Как уже говорилось выше, частоты вращений поля статора и самого ротора немного отличаются. В этом и заключается секрет работы асинхронного двигателя. Ротор постоянно как будто "пытается догнать" по скорости статор. Если бы это когда-то случилось, исчезла бы энергия, вращающая вал агрегата.
Для того, чтобы начать подключение рассматриваемого вида электродвигателя к однофазной системе электроснабжения, нужно знать, каким образом в электродвигателе подключены обмотки.
В основном, у таких двигателей имеется три обмотки, но соединяться они могут по-разному.
Увидеть рассмотренные схемы соединения можно на рисунке ниже.
В некоторых современных устройствах стали использовать смешанный способ соединения обмоток: устройство начинает работу по схеме "звезда", а затем автоматически переключается на "треугольник". Таким образом достигается и "мягкость" запуска, и высокая мощность электродвигателя.
Для подключения агрегата в сеть 220 В необходимо понять, какой способ соединения обмоток в нем использован. Эту информацию можно узнать, изучив специальную табличку на устройстве. На ней указано, какую мощность имеет двигатель, сколько оборотов в минуту совершает, а также информация о способах соединения.
Значком Δ обозначается тип соединения "треугольник", а Υ - "звезда". Бывают двигатели, на которых возможен только один способ соединения обмоток, а бывают те, на которых возможен любой из двух. При этом смотрите внимательно: на табличке должно быть указано, к питающей сети какого напряжения нужно подключать агрегат при каждом из соединений. Например, если на табличке имеется обозначение Δ/Υ 220/380 В, это означает, что соединение с питанием 220 В возможно только при соединении треугольником! Соединение звездой предполагает питание сети 380 В. Если вы подключите машину с соединением обмоток треугольником к сети 380 В, устройство сгорит! Будьте внимательны!
Безусловно, опытный электрик сможет подключить устройство, которое может подключаться только звездой к 380 В, к 220 В, но для этого необходимо произвести сложную коммутацию с выводами обмоток. Подключать такие устройства к 220 В не рекомендуется, так как можно испортить электродвигатель.
Если по какой-то причине на устройстве отсутствует табличка с характеристиками или вы просто хотите дополнительно убедиться, какое все-таки соединение обмоток имеет агрегат, можете заглянуть в клеммную коробку электродвигателя, которую можно открыть с помощью отвертки.
Можно использовать различные способы при необходимости подключить такой двигатель в сеть 220 В. Все они имеют и достоинства, и недостатки.
Во-первых, можно изменить способ подключения обмоток на "треугольник", придерживаясь нужной полярности, если до этого использовался способ "звезда". Ведь треугольник является более оптимальным способом подключения для сохранения мощности, так как напряжение для каждой обмотки будет распределено одинаково - по 220 В.
Как это сделать? Согласно схеме на рисунке выше, соединение звездой предполагает подключение начал обмоток (1; 2; 3) к сети, а соединение концов (6; 4; 5) в месте перемычкой. Чтобы изменить соединение обмоток на "треугольник", нужно установить перемычки между: (1-6); (2-4); (3-5). Указанная схема очень проста для применения, однако ее можно использовать только к двигателям мощностью не более 1,5 кВт.
Для электродвигателей большей мощностью для гарантированного пуска двигателя и нормальной работы необходимо использовать другие способы, где возможно изменить направление вращения (реверс двигателя). Схема такого подключения показана на рисунке ниже.
В чем заключается принцип действия этого способа? Способ подключения обмоток - также "треугольник". Сp и Cп - конденсаторы, Cп необходим для запуска и разгона электродвигателя, а Ср - при дальнейшей после запуска работе. Кн - кнопочный выключатель, R - резистор, разряжающий конденсатор после пуска двигателя, а изменение направления движения двигателя осуществляется с помощью переключателя SA.
Применять лучше масляные конденсаторы не меньше 300-400 В по напряжению.
Зачастую бывает, что под рукой нет емкости с необходимым номиналом. Для достижения нужной емкости собираются батареи из конденсаторов. Если соединить их параллельно друг другу, емкость суммируется.
Благодаря существующим формулам можно точно рассчитать емкости рабочих конденсаторов, эти формулы можно найти в интернете и успешно применять. Однако чтобы не углубляться в сложные математические расчеты, можно на каждые 100 Вт брать 7 мкФ (микрофарадов). Также в интернете можно найти сервисы, позволяющие произвести онлайн-расчет емкости конденсатора. Используйте тот вариант, который удобен вам! Что касается пусковых конденсаторов, их емкость должна быть в 3 раза больше, чем у рабочих.
Нужно достичь такого рабочего напряжения конденсаторов, чтобы оно было больше сетевого напряжения как минимум на 1 ступень. Иначе не гарантирована надежная работа конденсаторов при пуске двигателя.
Для пусковых конденсаторов также можно применять электролитические . Их основное преимущество - большая емкость при равных габаритах, которое достигается особым строением электродов.
Если вы решили использовать "электролиты", будьте предельно внимательны и осторожны! При неправильном подключении (несоблюдении полярности) может начаться процесс деградации, что приведет к сильному нагреванию. Нагрев приведет к росту давления в конденсаторе,и он может взорваться!
Учитывайте то, что мощность двигателя в этом случае достигнет лишь 50-60%, зато вы сможете работать с прибором от однофазной сети 220 В.
Проверьте целостность обмоток с помощью мультиметра. Для этого прозвоните отдельно начала и отдельно концы каждой обмотки. Не должно быть электрических связей между ними!
Если двигатель сразу запустился, это не всегда значит то, что он будет работать исправно. Сначала проверьте его в режиме холостого хода, а уже потом применяйте нагрузку!
Если вы четко следовали рекомендациям данной инструкции, то у вас все должно получиться правильно. Будьте предельно осторожны в работе - ведь вы имеете дело с электричеством, а это всегда небезопасно! Как видите, подключение трехфазного электродвигателя в сеть 220 В вполне возможно. Конечно, придется пожертвовать почти доброй половиной мощности нужного агрегата, но чаще всего этого бывает вполне достаточно для задач, поставленных в условиях отсутствия трехфазной электрической сети. Удачи вам в подключении и использовании нужных устройств!